Skip to main content

Eusocial Shrimp

One species of pistol shrimp forms colonies inside sponges, very much like bees in hives or ants in hills. These shrimps are considered to be eusocial, a term that describes groups of organisms in which most of the members are sterile workers while only one or two individuals are in charge of breeding. The interior of a sponge is similar to a chunk of Swiss cheese, riddled with tunnels and chambers. The pistol shrimps live in these passageways, gorging on sponge tissues that they scrape up with their small feeding claws. The predator-deterring toxins generated by sponges have no effect on these tiny boarders.

They thrive in the sponge environment, often producing colonies of several hundred individuals. For the shrimps, the sponge is a perfect home, safe from predators and stocked with plenty of food. pistol shrimp
In a colony of pistol shrimp, there is one breeding female. Often, but not always, one breeding male lives in the colony, too. All of the other members are males or juveniles who are not sexually differentiated. Many of these males patrol the sponge, defending it from other shrimp that would like to take over the space. This division of labor gives these shrimps a competitive edge and improves the chances of survival for all involved.

Eusocial shrimp colonies are possible because, unlike other crustaceans, the eggs of these animals do not hatch into larvae that swim in the plankton. Instead, they develop directly into shrimp that go straight to work in the colony. The young have no need to travel away from their parents in search of food and shelter. Except for the occasional juveniles who leave to strike out on their own, most of the snapping shrimps that are born in a sponge spend their entire lives there.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…