Skip to main content

Damselfish, Clown Fish, Cardinal Fish, and Squirrelfish

Another colorful and abundant reef fish is the damselfish, a delicate-looking animal with a small mouth. Damselfish nibble on the encrusting algae that grow on coral and rock. These red, yellow, orange, or blue fish grow to be about 6 inches (15 cm) long.


Like most damselfish, the Pacific gregory (Stegastes fasciolatus) is active during the day. Most of this fish’s time is spent “farming” a patch of alga that may cover up to 10.7 square feet (1 sq. m) of the reef. An excellent gardener, the little damselfish weeds out unwanted corals and algae so that its favored algae can flourish. To supplement plant growth, the fish fertilizes its garden with its own feces.

Stegastes fasciolatus
Stegastes fasciolatus

One of the brightest and best-known reef fish is the percula clown fish (Amphiprion ocellaris), one of several species of clown fishes and a member of the damselfish family. Reaching only 2.4 inches (6 cm), this small animal is striped in orange, white, and black. The percula clown fish lives in the tentacles of several kinds of anemones, despite the latter’s deadly stinging cells. Anemone tentacles are covered with mucus that prevents one tentacle from stinging another. The clown fish coats its body with this same mucus, a process that takes about one hour. If the clown fish and anemone are separated, the fish loses its immunity and has to repeat the procedure.

Amphiprion ocellaris
Amphiprion ocellaris (clown fish)
From its safe haven among the tentacles, a clown fish can cautiously dart out to feed on plankton and small crustaceans. The female percula clown fish lays her eggs on rock or coral near the anemone. After the male fertilizes them, both parents guard the clutch until the eggs hatch, running back to their safe house when threatened.

Squirrelfish, such as those in the lower color insert on page C-6, are colorful animals whose large populations make them conspicuous on many reefs. Sabre squirrelfish (Sargocentron spiniferum) are one of the larger species, growing to lengths of 17.7 inches (45 cm). Squirrelfish are numerous, but their populations are rivaled by the cardinal fish. During the day, cardinals hide in the crevices, but at night these fish, which average about 4 inches (10.2 cm) long, cover the reef. Many are red, a color that looks black in dark water and helps them avoid predators. Like other fish that are active at night, cardinal fish have very big eyes.

 During the reproductive cycle, cardinal fish employ a very unusual technique of guarding their eggs called mouth brooding. After eggs are laid in the water and fertilized, the male takes them in his mouth and keeps them there until they hatch. During this period of incubation, the male fish does not eat. Even after hatching, the young may return to hide in the father’s mouth for short periods of time.

cardinal fish
Cardinal fish

The cardinal fish is just one of several kinds of fish that are difficult to spot in the water. Many reef fish are well camouflaged, an adaptation that offers two big advantages: It helps animals avoid their predators, and it makes it easier for predators to ambush their own prey. The longlure frogfish (Antennarius multiocellatus) is so highly camouflaged that it looks like one of the corals or sponges. When the longlure frogfish moves from one location to another, it changes its colors so that wherever it goes it blends in perfectly. To attract prey, the fish is equipped with a fleshy antenna that dangles in front of its head similar to a fishing lure dangling from a pole. By waiting quietly with its antenna poised, the frogfish attracts small fish that mistake the lure for a snack. If a fish happens to bite off the lure, it grows back.

Antennarius multiocellatus
Antennarius multiocellatus (frogfish)

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…