Skip to main content

Sea Urchins and Sea Cucumbers

Sea urchins are echinoderms that look like rounded mounds of spines. Centrally located on their ventral surface is the mouth, which is equipped with jaws and teeth that scrape up algae. All sea urchins have tube feet and are able to move slowly across the floor of the reef.
The spines on different species of sea urchins show adaptations for unique environments. Urchins with thick spines use them to wedge their bodies between rocks, preventing predators from pulling them from their hiding places. Those that have flattened spines are able to tolerate the strong energy of waves. Sharp, venomous spines are adaptations to protect against predators. Some species have movable spines that help them crawl.

Savigny’s sea urchin (Diadema savignyi) is a large, black reef species armed with sharp spines that can cause painful punctures. Mathae’s sea urchin (Echinometra mathaei) is brown or pink with purple spines. The flower urchin (Toxopneustes pileolus) looks innocent, but its “flowers” are actually very small spines that are highly modified. Each little spine is a venomous pincer that carries enough toxin to cause paralysis or death in humans. The red pencil urchin (Heterocentrotus mammilatus) has flattened spines that help it wedge among rocks and survive in high-energy regions of the reef.
Heterocentrotus mammilatus
Heterocentrotus mammilatus

Sea cucumbers differ significantly from most other echinoderms. Instead of having the round or star shapes of their relatives, sea cucumbers, like the one in the upper color insert on page C-6, are cylindrical and look very much like the vegetable for which they are named. Some species are small and wormlike, but others reach impressive lengths of up to 3 feet (2 m).

During the day, sea cucumbers hide among rocks, but at night they emerge and work their way across the reef floor, “vacuuming” up sediment as they go. Inside their digestive systems, sand is filtered of its organic material, then the cleaned sand is excreted. The mouth, which is located at one end of the body, is surrounded by tentacles. Instead of sucking up sand, some species strain plankton from the water with their tentacles. The mouth does not contain teeth, but one species has teeth in its anus. In these animals, the anus also serves as the opening through which water is drawn into the body for gas exchange.

Sea cucumbers move sluggishly, crawling slowly on the sandy reef floor on their tube feet. These feet also enable sea cucumbers to cling very tightly to solid surfaces. Many divers who have tried to collect specimens have been disappointed to find that they will not budge. A few species are lacking tube feet and capable of swimming.

Of all reef inhabitants, sea cucumbers use one of the most unusual defense strategies. To protect themselves sea cucumbers project sticky threads of their intestines onto the attacker. The threads are coated with toxins that stop most predators in their tracks. When the threat has moved away, the intestinal structures begin to regenerate themselves.

The beaded sea cucumber (Euapta lappa) is a large one, measuring up to 3 feet (1 m) in length. Each thick, beadlike body segment is brown with thin yellow and black stripes. Beaded sea cucumbers have long, thick tentacles that are shaped like feathers. Members of this species do not have tube feet.
Euapta lappa
Euapta lappa

The five-toothed sea cucumber (Actinopyga agassizii), 1 foot (30 cm) long, ranging from gray to brown in color, is an unusual creature. The teeth of this echinoderm are located in its anus and can be seen when the sea cucumber “exhales” water that has been circulated over the gills. The anus is also the home of a commensal organism, the pearlfish (Carpus).

In commensal relationships, one organism is benefited, and the other is not harmed or helped. In this case the adult pearlfish has a safe place to live inside the sea cucumber, which neither benefits nor is hurt by the pearlfish’s presence.

As juveniles, pearlfish are parasites, feeding on the sexual organs of their hosts, but as adults, they forage for food on the reef. For a foraging adult pearlfish to return to its host, it must swim into the cucumber’s anus. The cucumber keeps its anal opening squeezed closed, so the pearlfish waits until the cucumber “exhales” and relaxes the opening, then the fish darts inside.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…