Skip to main content

Marine Bird Anatomy

Marine Bird Anatomy
Birds are warm-blooded vertebrates that have feathers to insulate and protect their bodies. In most species of birds, feathers are also important adaptations for flying. As a general rule, birds devote a lot of time and energy to keeping their feathers waterproof in a process called preening. During preening, birds rub their feet, feathers, and beaks with oil produced by the preen gland near their tail.

The strong, lightweight bones of birds are especially adapted for flying. Many of the bones are fused, resulting in the rigid type of skeleton needed for flight. Although birds are not very good at tasting or smelling, their senses of hearing and sight are exceptional. They maintain a constant, relatively high body temperature and a rapid rate of metabolism. To efficiently pump blood around their bodies, they have a four-chambered heart.

Like marine reptiles, marine birds have glands that remove excess salt from their bodies. Although the structure and purpose of the salt gland is the same in all marine birds, its location varies by species. In most marine birds, salt accumulates in a gland near the nostrils and then oozes out of the bird’s body through the nasal openings.

The term seabird is not scientific but is used to describe a wide range of birds whose lifestyles are associated with the ocean. Some seabirds never get further out into the ocean than the surf water. Many seabirds are equipped with adaptations of their bills, legs, and feet. Short, tweezerlike bills can probe for animals that are near the surface of the sand or mud, while long, slender bills reach animals that burrow deeply. For wading on wet soil, many seabirds have lobed feet, while those who walk through mud or shallow water have long legs and feet with wide toes.

Other marine birds are proficient swimmers and divers who have special adaptations for spending time in water. These include wide bodies that have good underwater stability, thick layers of body fat for buoyancy, and dense plumage for warmth. In swimmers, the legs are usually located near the posterior end of the body to allow for easy maneuvers, and the feet have webs or lobes between the toes.

All marine birds must come to the shore to breed and lay their eggs. Breeding grounds vary from rocky ledges to sandy beaches. More than 90 percent of marine birds are colonial and require the social stimulation of other birds to complete the breeding process. Incubation of the eggs varies from one species to the next, but as a general rule the length of incubation correlates to the size of the egg: Large eggs take longer to hatch than small ones do.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…