Skip to main content

Groups of Invertebrates

Groups of Invertebrates
Several groups of invertebrates construct their own quarters: Ants, for example, create hills, and bees build hives; however, no other group of animals builds a more dramatic home for itself than the corals. A coral reef, which resembles a pile of rocks, is actually an invertebrate superstructure made up of a living colony and the skeletons of their dead ancestors. The colony is always growing, but at a painfully slow rate of an inch or two (2.54 to 5 cm) each year. Reefs that are miles long were formed over thousands of years.

Chief inhabitants of the reef are the corals themselves. These simple invertebrates live alongside sponges, worms, anemones, hydroids, and thousands of other types of animals. Coral polyps wave their stinging tentacles in the water all through the night to grab any potential food item that comes their way. In addition, they stock their gastrovascular cavity with millions of zooxanthellae, tiny dinoflagellates that photosynthesize in the daytime.

A coral reef may support as many sponges, in both population size and diversity, as it does coral animals. Sponges, the simplest kinds of animals on Earth, are efficient filter feeders that continuously gather food. They grow in the company of colorful soft corals that resemble brightly colored plants, giant feathers, or ornate fans.

Close cousins to the corals are the hydroids, colonial cnidarians. Some of these sessile colonies form flexible, branching stalks, and others build limestone skeletons similar to those of the true corals. Nearby, growing singly or in clumps, are the anemones, cnidarians that lack any type of body covering. Anemones hold out their delicate but poisonous tentacles during the day to gather food. Some live in symbiotic relationships with shrimp, small fish, or crabs.

Scattered throughout the reef are the worms. Flatworms can be identified by their thin, transparent bodies and highly branched digestive systems. These simple animals feed by secreting digestive enzymes on their food, then sucking it up. The more advanced worms, the polychaetes, either crawl around the reef in search of food or catch food particles in their halo of radioles. Many are brightly colored predators that carry dangerous toxins.

The color and beauty of the coral reef make it easy to forget that each day is a life-and-death struggle for the simple animals that live there. Every invertebrate is a potential meal for another animal and survives simply because it has evolved some method of protection from predators.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…