Skip to main content

Fish A Rainbow of Colors

The most active and obvious living things in the ocean are the fish, and the greatest diversity of fish species can be found on the coral reef. No other part of the marine environment can match the abundance and diversity of the reef fish populations. Some families of fish are adapted for life among the corals, while others are better suited to live among sea fans, sponges, and sea anemones. Many are specialized to live on the reef floor, while others makes their homes near the water’s surface. The variations in reef fish are almost limitless.

Unlike the reef-building corals, armored crustaceans, and two-shelled clams, fish are vertebrates, animals with backbones. All vertebrates have internal skeletons for structure and support. The skeleton may be made of cartilage, a tough, flexible material; bone; or a combination of the two. Fish are vertebrates that have scales, fins, and gills.

The reef ecosystem can support large populations of fish because most of the inhabitants are specialized feeders. If fish competed with one another for food, many would be driven away by hunger. By specializing, reef fish have been able to develop clearly defined feeding strategies that allow each species to fill a specific role in the community that is slightly different from that of its neighbors’.

One strategy simply involves feeding at different times. Two different species of fish that eat the same food can share the supply if one feeds at night and the other during the day. In the daytime, the reef teems with animals that are grazing, stalking, sifting, or chasing down their next meals. Near dusk, the daytime feeders retreat to find places to hide, and the nighttime feeders emerge. As one shift ends and the next one begins, there is a small lull in reef activity; however, by the time it is dark, the night feeders are hard at work.

Another way populations of reef fish share the bounty is by eating in different parts of the habitat. The seafloor is one of the reef habitats that fish subdivide at feeding time. Some bottom feeders dine on organisms living just below the sand and sediment. These predators float above the reef floor, watching it closely for any signs of activity. If something moves, they rush forward and grab it. Other fish on the bottom search for their prey by “mining,” blowing streams of water over the sediment, or by stirring it to expose prey. A few species of bottom feeders have barbels, long, whiskerlike structures used to feel around in the sediment for prey. A different group of fish actually eats the sand and sediment, filters out the food, then expels the soil back into the environment.

A few species of fish have found niches for themselves by feeding on organisms that nothing else wants to eat. Some of these dine on sponges, despite the fact that sponges produce repulsive chemicals and their bodies contain sharp spicules. Other fish survive by attacking and eating long-spined black urchins, poisonous creatures that are covered with needlesharp spines. Most animals give these urchins wide berths, but the highly specialized urchin eaters have developed methods of flipping the animals onto their backs, enabling them to attack the urchins’ more vulnerable undersides.

Of the more than 22,000 fish species known worldwide, nearly one-third of them have been seen on coral reefs. There are two major groups of fish, the cartilaginous families, which include the skates and rays, and the bony fish families. Bony fish that are characteristic of coral reefs include damselfish and anemone fish (family Pomacentridae), squirrelfish and soldierfish (family Holocentridae), wrasses (family Labridae), parrot fish (family Scaridae), surgeonfish (family Acanthuridae), butterfly fish (family Chaetodontidae), angelfishes (family Pomacanthidae), groupers and sea bass (family Serranidae), blennies (family Blenniidae), gobies (family Gobiidae), cardinal fish (family Apogonidae), and grunts (family Haemulidae).

butterfly fish
Butterfly Fish

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…