Skip to main content


The most common type of arthropod on the reef is the crustacean. Crustaceans include shrimp, lobsters, and crabs. As shown in Figure below, the body segments of crustaceans are grouped into three specialized areas: head, thorax, and abdomen. Crustaceans have paired appendages attached to each segment that are used for walking, sensing, feeding, and defense. In a number of species, appendages form claws that are capable of exerting hundreds of pounds of pressure.

The biggest reef crustacean is the lobster. Even though the first pair of appendages are modified as claws in several lobster species, most reef lobsters are clawless. The appendages on the thorax of lobsters are adapted for walking along the reef floor and for swimming. Several lobster species make their homes on the reef. Two common ones are the spiny lobster (Panulirus argus) and the slipper lobster (Parribacus antarcticus).

The body of a crustacean is divided into three areas: head, thorax, and abdomen. The head and thorax are fused to form a cephalothorax.
The body of a crustacean is divided into
three areas: head, thorax, and abdomen. The head
and thorax are fused to form a cephalothorax.

The spiny lobster, as shown in the upper color insert on page C-5, is clawless, and its cylindrical body measures about 1 foot (30 cm) long. For protection the lobster is covered with numerous, formidable sharp spines. Body color varies with age and sex, ranging from bright yellow to reddish brown and blue. The legs display yellow stripes, and the abdomen is covered in yellow spots.

The spiny lobster has a fascinating and complex, six-stage life history that has received a lot of attention from marine biologists. Studies show that this animal develops in several areas of the sea, including the open ocean, shallow coastal water, and coral reefs. During its 30-year life, a spiny grows from a miniscule larva to an adult of more than 11 pounds (5 kg), taking seven to 10 years to reach sexual maturity.

Generally, the mature spiny lobster hides in reef crevices, holes, and caves during the day, emerging at dusk to look for food in the sand and sea grass. A spiny will wander several yards from its den, preying on a variety of organisms including crabs, small fish, sea urchins, algae, and seaweed. During nighttime forages, lobsters may gather in small social aggregates.

Before dawn, each lobster returns to the safety of its own, or a neighbor’s, den. These nighttime wanderers can find their way around in the dark because they are very sensitive to the Earth’s magnetic field and can use small variations in the field as landmarks. Their ability to find their dens is similar to the navigational senses of homing pigeons.

In the fall of each year, usually after a period of stormy weather, spiny lobsters congregate on the reef floor and begin a migration. They form a single file line called a queue, the head of one animal touching the tail of the animal in front of it, to march to deeper water. The lobsters travel day and night until they reach their destination. In the spring, they return to the reefs one by one. Scientists believe that these activities are related to water temperature and reproductive cycles.

Like the spiny, the slipper lobster is also clawless. The slipper lobster is drab or pale yellow and may grow to be 10 inches (25 cm) long. This carnivore also searches for food at night and will eat snails, oysters, clams, and the bodies of dead organisms. Slipper lobsters use their jaws to crack open prey. The bodies of these animals are flattened, a trait that helps them travel among the rocks unnoticed. Flat, shovel-like extensions on the head are the antennae.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…