Skip to main content

Coral reef communities

Coral reef communities
Coral reef communities support a larger number and greater diversity of fish than any other aquatic habitat. Reef fish are specialized for a variety of feeding strategies and habitats, adaptations that permit different species to feed within the same area and on similar food supplies. Damselfish, for example, primarily feed on algae that grow on top of the coral skeletons, but parrot fish prefer the algae within the coral polyps.

Many reef fish are predators of fish or invertebrates. Even though the most impressive hunting fish are large, there are an equal number of smaller, less obvious ones. Hunters patrol the area day and night, even at dusk and dawn when fish are moving to their refuges.

A good number of reef fish are plankton eaters, including soldierfish and cardinals. Plankton feeders are not closely related to one another but share similar lifestyles. Usually they have small, streamlined bodies and forked tails, which are good at delivering bursts of speed to escape predators. They tend to feed in groups for safety.

The plant-eating reef fish include surgeonfish and damselfish, animals that use their sharp-edged teeth to clean the coral reef of algae. Alga has a tendency to grow quickly and can eventually smother and “choke” a reef to death if it is not kept in check. Grazing fish are critical to maintaining the balance of algal cover on the reef while at the same time supplying themselves with a source of energy.

Large populations and intense competition have led to the development of reef fish that fill every niche of the ecosystem. Scientists are still working to discover all of the fish that make their homes around the reef and to understand the evolutionary pressures that have resulted in these varied and colorful reef residents.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…