Skip to main content

Wave Generation By Wind

The prime focus in this article is on ocean waves (which have always captured the scientific imagination), although results from wind-wave tank studies are also introduced wherever appropriate. Growth mechanisms fall naturally into three phases: (a) the onset of waves on a calm sea surface, (b) mature growth in the confused sea state under moderate winds, and (c) sea-spray-dominated wave environments under very high wind speeds. Of these three phases, (b) has the greatest general importance, and numerous practical formulas have been developed over the years to represent its properties. Figure above, illustrates the sea state which occurs at the top end of phase (b) in a strong gale (wind speed c. 25ms -1, Beaufort force 9).

The sea state during a strong gale.
The sea state during a strong gale.
An important consideration is that wave generation by wind involves three main physical processes: (1) direct input from the wind, (2) nonlinear transfer between wavenumbers, and (3) wave dissipation. This article is specifically dedicated to (1); however, we briefly review (2) and (3) below.

Nonlinear interactions within the wave system can only be neglected for infinitesimal waves. To a first approximation, the wind wave can be regarded as almost sinusoidal with negligible steepness (i.e., linear), but its very weak mean nonlinearity (i.e., finite steepness and deviation of its shape from the sinusoid) is generally believed to control the evolution of the wave field. Theoretical models of the air–sea boundary layer
indicate that the input of momentum from the wind is centered in the short gravity waves. The wind pumps energy mostly into short (high-frequency) and slowly moving waves of the wave field which then transfer this energy across the continuous spectrum of waves of all scales mainly toward longer (lower-frequency) components, which may be traveling at speeds close to the wind speed, thus allowing them to grow into the dominant waves of frequencies close to the peak frequency of the wave (energy) spectrum. The transfer of energy toward shorter (higher-frequency) waves where it is dissipated occurs at a much less significant rate.

Wave breaking is the major player in the third important mechanism, which drives wave evolution – wave energy dissipation. The Southern Ocean has the greatest potential for wave growth due to the never ceasing progression of intense storm systems over vast expanses of sea surface, unimpeded by land masses. Yet, wave models ( indicate that the significant wave height (the average crest-to-trough height of the one-third highest waves) rarely goes beyond 10 m. The process, which controls the wave growth, is the dissipation by wave breaking, and to a lesser extent radiation of wave energy away from the storm centers, and into the adjacent seas.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…