Skip to main content

Sea Grasses and Mangroves

Although the green, brown, and red macroalgae play key roles in supporting the reef ecosystem, they are not the only large plants growing there. Two types of vascular plants, sea grasses and mangroves, are common around coral reefs. The ancestors of these true plants evolved to live on the land then moved back to the sea; therefore, they have many of the typical terrestrial plant adaptations such as roots and vascular systems. In addition, both mangroves and grasses form pollen and seeds. Once a year, grasses produce thousands of tiny underwater flowers that yield pollen grains that float in the water from one plant to another. After pollination, fertilized eggs mature into seeds that float away from the parent plants, sink, and start new beds of grass.

Besides reproducing sexually, sea grasses can spread asexually by sending out runners that generate upright shoots. In this way, they can quickly form large meadows on the sandy bottoms of lagoons. Sea grasses are not tolerant of intense wave action, so are usually found in the quieter regions of the reef. Sea grass beds are important sources of food for many marine animals including shellfish, fish, and turtles. In addition, they provide good hiding places for the young of many species and often serve as nurseries where juveniles can find plenty of food and protection from predators.

Mangroves are large plants that are found growing on the beaches of island reefs. A mature mangrove tree can reach heights of 26.2 to 32.8 feet (8 to 10 m). Mangroves are never completely submerged; however, their root systems form extensive networks in shallow salt water. The presence of mangrove roots slows down the rate at which sediment-laden water swirls around the shore. When fast-moving water slows, it can no longer support suspended material, so the soil in it settles. The mangrove roots trap and hold soil, helping to stabilize and expand shorelines. The roots also provide shade, hiding places, and food for animals. Many species of reefdwelling animals spend part of their lives among the roots.

Unlike sea grasses, mangroves produce above-water flowers. After pollination, egg cells develop into seeds on the trees. Seeds mature to seedlings before falling off the trees. If the tide is out when a seedling falls, it lands in the sediment and grows there. If the tide is in, the seedling drops into the water and is carried to a new location.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…