Skip to main content

Ocean Surface Waves

Ocean surface waves are the most common oceanographic phenomena that are known to the casual observer. They can at once be the source of inspiration and primal fear. It is remarkable that the complex, random wave field of a storm-lashed sea can be studied and modeled using well-developed theoretical concepts. Many of these concepts are based on linear or weakly nonlinear approximations to the full nonlinear dynamics of ocean waves. Early contributors to these theories included such luminaries as Cauchy, Poisson, Stokes, Lagrange, Airy, Kelvin and Rayleigh. Many of the current challenges in the study of ocean surface waves are related to nonlinear processes which are not yet well understood. These include dynamical coupling between the atmosphere and the ocean, wave–wave interactions, and wave breaking.

For the purposes of this article, surface waves are considered to extend from low frequency swell from distant storms at periods of 10 s or more and wavelengths of hundreds of meters, to capillary waves with wavelengths of millimeters and frequencies of O(10) Hz. In between are wind waves with lengths of O(1–100)m and periods of O(1–10) s. See Figure shows a spectrum of surface waves measured from the Research Platform FLIP off the coast of Oregon. The spectrum, Φ, shows the distribution of energy in the wave field as a function of frequency. The wind wave peak at approximately 0.13 Hz is well separated from the swell peak at approximately 0.06 Hz.

(A) Surface displacement spectrum measured with an electromechanical wave gauge from the Research Platform FLIP in 8m s 1 winds off the coast of Oregon. Note the wind-wave peak at 0.13 Hz, the swell at 0.06 Hz and the heave and pitch and roll of FLIP at 0.04 and 0.02 Hz respectively. (B) An extension of (A) with logarithmic spectral scale, note that from the wind sea peak to approximately 1 Hz the spectrum has a slope like f 4, common in wind-wave spectra. (Reproduced with permission from Felizardo FC and Melville WK (1995). Correlations between ambient noise and the ocean surface wave field. Journal of Physical Oceanography 25: 513–532.)
(A) Surface displacement spectrum measured with an electromechanical wave gauge from the Research Platform FLIP in
8m s 1 winds off the coast of Oregon. Note the wind-wave peak at 0.13 Hz, the swell at 0.06 Hz and the heave and pitch and roll of FLIP at 0.04 and 0.02 Hz respectively. (B) An extension of (A) with logarithmic spectral scale, note that from the wind sea peak to approximately 1 Hz the spectrum has a slope like f -4, common in wind-wave spectra. (Reproduced with permission from Felizardo FC and Melville WK (1995). Correlations between ambient noise and the ocean surface wave field. Journal of Physical Oceanography 25: 513–532.)
Ocean surface waves play an important role in air–sea interaction. Momentum from the wind goes into both surface waves and currents. Ultimately the waves are dissipated either by viscosity or breaking, giving up their momentum to currents. Surface waves affect upper-ocean mixing through both wave breaking and their role in the generation of Langmuir circulations. This breaking and mixing influences the temperature of the ocean surface and thus the thermodynamics of air–sea interaction. Surface waves impose significant structural loads on ships and other structures. Remote sensing of the ocean surface, from local to global scales, depends on the surface wave field.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…