Skip to main content

Introduction Wave Breaking

Most readers will associate wave breaking with breaking surf at shallow beaches. This article, however, deals with breaking wind waves in deep water where wave and turbulence fields are not affected by the presence of the seafloor.
Introduction Wave Breaking

Deep-water surface waves are sometimes compared to a gearbox linking the atmosphere to the oceans. In this analogy, breaking waves would indicate a high gear. They play a dominant role in many upper ocean processes, such as momentum transfer from wind to ocean currents, dissipation of wave energy, entrainment of air bubbles, disruption of surface films, and the generation of sea spray and aerosols, besides being a source of ambient noise.
Wave breaking causes enhanced turbulent kinetic energy levels in the near-surface layer and thus governs turbulent transport of heat, gases, and particles in the near-surface zone. The forces exerted by breaking waves on ships and offshore structures are up to 10 times larger than for nonbreakers, and especially larger breaking waves pose significant danger to seafarers.

Turbulence generated by breaking waves is very intermittent and coexists with turbulence generated by other sources such as shear stress, convection, internal waves, and Langmuir circulation. Presently, it is not understood how wave-induced turbulence interacts with this background turbulence, and these complex interactions are not discussed in any detail in this article.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…