Skip to main content

Chemical and Physical Characteristics of Water

Water is one of the most widespread materials on this planet. Water fills the oceans, sculpts the land, and is a primary component in all living things. For all of its commonness, water is a very unusual molecule whose unique qualities are due to its physical structure.

Water is a compound made up of three atoms: two hydrogen atoms and one oxygen atom. The way these three atoms bond causes one end of the resulting molecule to have a slightly negative charge, and the other end a slightly positive charge. For this reason water is described as a polar molecule.

Chemical and Physical Characteristics of Water
The positive end of one water molecule is attracted to the negative end of another water molecule. When two oppositely charged ends of water molecules get close enough to each other, a bond forms between them. This kind of bond is a hydrogen bond. Every water molecule can form hydrogen bonds with other water molecules. Even though hydrogen bonds are weaker than the bonds that hold together the atoms within a water molecule, they are strong enough to affect the nature of water and give this unusual liquid some unique characteristics.

Water is the only substance on Earth that exists in all three states of matter: solid, liquid, and gas. Because hydrogen bonds are relatively strong, a lot of energy is needed to separate water molecules from one another. That is why water can absorb more heat than any other material before its temperature increases and before it changes from one state to another.

Since water molecules stick to one another, liquid water has a lot of surface tension. Surface tension is a measure of how easy or difficult it is to break the surface of a liquid. These hydrogen bonds give water’s surface a weak, membranelike quality that affects the way water forms waves and currents. The surface tension of water also impacts the organisms that live in the water column, water below the surface, as well as those on its surface.

Atmospheric gases, such as oxygen and carbon dioxide, are capable of dissolving in water, but not all gases dissolve with the same ease. Carbon dioxide dissolves more easily than oxygen, and there is always plenty of carbon dioxide in seawater. On the other hand, water holds only 1/100 the volume of oxygen found in the atmosphere. Low oxygen levels in water can limit the number and types of organisms that live there. The concentration of dissolved gases is affected by temperature. Gases dissolve more easily in cold water than in warm, so cold water is richer in oxygen and carbon dioxide than warm water. Gases are also more likely to dissolve in shallow water than deep. In shallow water, oxygen gas from the atmosphere is mixed with water by winds and waves. In addition, plants, which produce oxygen gas in the process of photosynthesis, are found in shallow water.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…