Skip to main content

Simple Organisms and Algae on the Coral Reef

Simple Organisms and Algae on the Coral Reef
Few places on Earth rival the abundance and splendor of life on the coral reef. A reef visitor can spot living things in almost every size, shape, and color; however, some of the most important reef inhabitants cannot be seen with the naked eye. These invisible organisms live on the reef floor or float in the water column, the huge expanse of water below the surface.

The organization of living things on coral reefs is unique. In most oceans, upper regions of the water teem with plankton, communities of tiny, drifting organisms. The plantlike members of this community, the phytoplankton, are able to carry out photosynthesis. The rest of the community is zooplankton, and it is made up of very small living things that cannot photosynthesize. In seas where the populations of plankton are substantial, waters are also rich in minerals and nutrients. The waters around coral reefs are low in nutrients and have very small populations of plankton. It is this very lack of nutrients and plankton that make the waters of reefs so beautiful. Their vivid blue color is a reflection of the sky, and their crystal-clear transparency is due to the absence of living things in the water column.

Despite low levels of nutrients, coral reef waters are extremely productive parts of the oceans. Productivity refers to the amount of photosynthesis that takes place in an ecosystem, and therefore the amount of food created. Productivity on reefs is 50 to 100 times greater than in nearby ocean waters.
Several kinds of organisms contribute to the elevated productivity
on reefs. Some of the primary producers are large
algae, sea grasses, and sizable populations of microscopic
algae. Many of these green, one-celled organisms live in the
tissues of corals and a few other types of simple animals.

Popular posts from this blog

Advantages and Disadvantages of an Exoskeleton

More than 80 percent of the animal species are equipped with a hard, outer covering called an exoskeleton. The functions of exoskeletons are similar to those of other types of skeletal systems. Like the internal skeletons (endoskeletons) of amphibians, reptiles, birds, and mammals, exoskeletons support the tissues and give shape to the bodies of invertebrates. Exoskeletons offer some other advantages. Serving as a suit of armor, they are excellent protection against predators. Also, because they completely cover an animal’s tissues, exoskeletons prevent them from drying out. In addition, exoskeletons serve as points of attachment for muscles, providing animals with more leverage and mechanical advantage than an endoskeleton can offer. That is why a tiny shrimp can cut a fish in half with its claw or lift an object 50 times heavier than its own body.
Despite all their good points, exoskeletons have some drawbacks. They are heavy, so the only animals that have been successful with them …

Differences in Terrestrial and Aquatic Plants

Even though plants that live in water look dramatically different from terrestrial plants, the two groups have a lot in common. Both types of plants capture the Sun’s energy and use it to make food from raw materials. In each case, the raw materials required include carbon dioxide, water, and minerals. The differences in these two types of plants are adaptations to their specific environments.
Land plants are highly specialized for their lifestyles. They get their nutrients from two sources: soil and air. It is the job of roots to absorb water and minerals from the soil, as well as hold the plant in place. Essential materials are transported to cells in leaves by a system of tubes called vascular tissue. Leaves are in charge of taking in carbon dioxide gas from the atmosphere for photosynthesis. Once photosynthesis is complete, a second set of vascular tissue carries the food made by the leaves to the rest of the plant. Land plants are also equipped with woody stems and branches that …

Prokaryotic Cell Structure

Prokaryotic cells are about 10 times smaller than eukaryotic cells. A typical E. coli cell is about 1 μm wide and 2 to 3μm long. Structurally, prokaryotes are very simple cells when compared with eukaryotic cells, and yet they are able to perform the necessary processes of life. Reproduction of prokaryotic cells is by binary fission—the simple division of one cell into two cells, after DNA replication and the formation of a separating membrane and cell wall. All bacteria are prokaryotes, as are the archaea.

Embedded within the cytoplasm of prokaryotic cells are a chromosome, ribosomes, and other cytoplasmic particles (Fig. 1). Unlike eukaryotic cells, the cytoplasm of prokaryotic cells is not filled with internal membranes. The cytoplasm is surrounded by a cell membrane, a cell wall (usually), and sometimes a capsule or slime layer. These latter three structures make up the bacterial cell envelope. Depending on the particular species of bacterium, flagella, pili (description follows)…